# Advanced statistical methods for astrophysical probes of cosmology

File | Description | Size | Format | |
---|---|---|---|---|

March-MC-2012-PhD-Thesis.pdf | 3.2 MB | Adobe PDF | Download |

Title: | Advanced statistical methods for astrophysical probes of cosmology |

Author(s): | March, Marisa Cristina |

Item Type: | Thesis or dissertation |

Abstract: | The work presented in my thesis develops advanced Bayesian statistical methods for using astrophysical data to probe our understanding of the Universe, I cover three main areas: Should we doubt the cosmological constant? While Bayesian model selection is a useful tool to discriminate between competing cosmological models, it only gives a relative rather than an absolute measure of how good a model is. Bayesian doubt introduces an unknown benchmark model against which the known models are compared, thereby obtaining an absolute measure of model performance in a Bayesian framework. I apply this new methodology to the problem of the dark energy equation of state, comparing an absolute upper bound on the Bayesian evidence for a presently unknown dark energy model against a collection of known models including a flat Lambda cold dark matter ( CDM ) scenario. I find a strong absolute upper bound to the Bayes factor between the unknown model and CDM. The posterior probability for doubt is found to be less than 13 per cent (with a 1 per cent prior doubt) while the probability for CDM rises from an initial 25 per cent to almost 70 per cent in light of the data. I conclude that CDM remains a sufficient phenomenological description of currently available observations and that there is little statistical room for model improvement Improved constraints on cosmological parameters from supernovae type Ia data: I present a new method based on a Bayesian hierarchical model to extract constraints on cosmological parameters from SNIa data obtained with the SALT-II lightcurve fitter. I demonstrate with simulated data sets that our method delivers considerably tighter statistical constraints on the cosmological parameters and that it outperforms the usual chi-square approach 2/3 of the times. As a further benefit, a full posterior probability distribution for the dispersion of the intrinsic magnitude of SNe is obtained. I apply this method to recent SNIa data and find that it improves statistical constraints on cosmological parameters from SNIa data. From the combination of SNIa, CMB and BAO data I obtain Ωm = 0:28 ± 0:02; ΩΛ = 0:73 ± 0:01 (assuming w = -1) and Ωm = 0:28 ± 0:01, w = -0:90 ± 0:05 (assuming flatness; statistical uncertainties only). I constrain the intrinsic dispersion of the B-band magnitude of the SNIa population, obtaining σ int μ = 0:13 ± 0:01[mag]. Robustness to systematics for future dark energy probes: I extend the Figure of Merit formalism usually adopted to quantify the statistical performance of future dark energy probes to assess the robustness of a future mission to plausible systematic bias. I introduce a new robustness Figure of Merit which can be computed in the Fisher Matrix formalism given arbitrary systematic biases in the observable quantities. I argue that robustness to systematics is an important new quantity that should be taken into account when optimizing future surveys. I illustrate our formalism with toy examples, and apply it to future type Ia supernova (SNIa) and baryonic acoustic oscillation (BAO) surveys. For the simplified systematic biases that I consider, I find that SNIa are a somewhat more robust probe of dark energy parameters than the BAO. I trace this back to a geometrical alignment of systematic bias direction with statistical degeneracy directions in the dark energy parameter space. |

Publication Date: | 2012 |

Date Awarded: | Mar-2012 |

URI: | http://hdl.handle.net/10044/1/9486 |

Advisor: | Trotta, Roberto Jaffe, Andrew |

Sponsor/Funder: | STFC, RAS, Impperial College Trust |

Department: | Physics |

Publisher: | Imperial College London |

Qualification Level: | Doctoral |

Qualification Name: | Doctor of Philosophy (PhD) |

Appears in Collections: | Physics PhD theses |